
√exans

Кабели силовые с изоляцией из сшитого полиэтилена на напряжение 6-35 кВ

Содержание

Кабели с изоляцией из сшитого полиэтилена	Введение	2
Расчет номинального тока .6 Инструкции по прокладке .8 Электрические испытания после прокладки .9 Кабели в полиэтиленовой оболочке .10 - с продольной герметизацией .12 - с продольной и поперечной герметизацией .14 Кабели в поливинилхлоридной оболочке .16 - одножильный .16 - трехжильный .18 Бронированные трехжильные кабели .20 Кабели, не распространяющие горение, не содержащие галогенов .23 - одножильный .24 - трехжильный .24 - трехжильный .25 Кабель для воздушных линий электропередачи .26 Кабель с изоляцией из сшитого полиэтилена для подводной прокладки .27 Методика предварительного выбора типа кабеля для изготовления на заказ .28 Техническая информация .29 Активное и индуктивное сопротивление .30 Рабочая емкость .31 Ток короткого замыкания .31 Значения токов короткого замыкания .32 - для кабелей с изоляцией из сшитого полиэтилена .32 - для кабелей с изоляцией из сшитого пол		
Инструкции по прокладке 8 Электрические испытания после прокладки 9 Кабели в полиэтиленовой оболочке 10 - с продольной и поперечной герметизацией 12 - с продольной и поперечной герметизацией 14 Кабели в поливинилхлоридной оболочке 16 - одножильный 16 - трехжильный 18 Бронированные трехжильные кабели 20 Кабели, не распространяющие горение, не содержащие галогенов 23 - одножильный 24 - трехжильный 25 Кабель для воздушных линий электропередачи 26 Кабель с изоляцией из сшитого полиэтилена для подводной прокладки 27 Методика предварительного выбора типа кабеля для изготовления на заказ 28 Техническая информация 29 Активное и индуктивное сопротивление 30 Рабочая емкость 31 Ток короткого замыкания 31 Значения токов короткого замыкания 32 - для кабелей с изоляцией из сшитого полиэтилена 32 - для кабелей, проложенных в земле 34 - для кабелей, проложенных в земле 34 - для кабелей, про	Маркировка	4
Электрические испытания после прокладки .9 Кабели в полиэтиленовой оболочке .10 - с продольной герметизацией .12 - с продольной и поперечной герметизацией .14 Кабели в поливинилхлоридной оболочке .16 - одножильный .16 - трехжильный .18 Бронированные трехжильные кабели .20 Кабели, не распространяющие горение, не содержащие галогенов .23 - одножильный .24 - трехжильный .25 Кабель для воздушных линий электропередачи .26 Кабель с изоляцией из сшитого полиэтилена для подводной прокладки .27 Методика предварительного выбора типа кабеля для изготовления на заказ .28 Техническая информация .29 Активное и индуктивное сопротивление .30 Рабочая емкость .31 Ток короткого замыкания .31 Зна кабелей с изолящией из сшитого полиэтилена .32 - для кабелей, проложенных в земле .34 - для кабелей, проложенных в земле .34 - для кабелей, проложенных в земле .34 - для кабелей, проложенных в земле .34 <t< th=""><th></th><th></th></t<>		
Кабели в полиэтиленовой оболочке	Инструкции по прокладке	8
- с продольной герметизацией 12 - с продольной и поперечной герметизацией 14 Кабели в поливинилхлоридной оболочке 16 - одножильный 16 - трехжильный 18 Бронированные трехжильные кабели 20 Кабели, не распространяющие горение, не содержащие галогенов 23 - одножильный 24 - трехжильный 25 Кабель для воздушных линий электропередачи 26 Кабель с изоляцией из сшитого полиэтилена для подводной прокладки 27 Методика предварительного выбора типа кабеля для изготовления на заказ 28 Техническая информация 29 Активное и индуктивное сопротивление 30 Рабочая емкость 31 Ток короткого замыкания 31 зна кабелей с изоляцией из сшитого полиэтилена 32 - для кабелей с изоляцией из сшитого полиэтилена 32 - для медного экрана 33 Корректирующие коэффициенты при групповой прокладке 34 - для кобелей, проложенных в земле 34 - для многожильных кабелей 35	Электрические испытания после прокладки	9
- с продольной и поперечной герметизацией		
Кабели в поливинилхлоридной оболочке 16 - одножильный 16 - трехжильный 18 Бронированные трехжильные кабели 20 Кабели, не распространяющие горение, не содержащие галогенов 23 - одножильный 24 - трехжильный 25 Кабель для воздушных линий электропередачи 26 Кабель с изоляцией из сшитого полиэтилена для подводной прокладки 27 Методика предварительного выбора типа кабеля для изготовления на заказ 28 Техническая информация 29 Активное и индуктивное сопротивление 30 Рабочая емкость 31 Ток короткого замыкания 31 Значения токов короткого замыкания 32 - для кабелей с изоляцией из сшитого полиэтилена 32 - для медного экрана 33 Корректирующие коэффициенты при групповой прокладке 34 - для многожильных кабелей 35	·	
- одножильный 16 - трехжильный 18 Бронированные трехжильные кабели 20 Кабели, не распространяющие горение, не содержащие галогенов 23 - одножильный 24 - трехжильный 25 Кабель для воздушных линий электропередачи 26 Кабель с изоляцией из сшитого полиэтилена для подводной прокладки 27 Методика предварительного выбора типа кабеля для изготовления на заказ 28 Техническая информация 29 Активное и индуктивное сопротивление 30 Рабочая емкость 31 Ток короткого замыкания 31 Значения токов короткого замыкания 32 - для кабелей с изоляцией из сшитого полиэтилена 32 - для медного экрана 33 Корректирующие коэффициенты при групповой прокладке 34 - для кабелей, проложенных в земле 34 - для многожильных кабелей 35	- с продольной и поперечной герметизацией	14
- трехжильный 18 Бронированные трехжильные кабели 20 Кабели, не распространяющие горение, не содержащие галогенов 23 - одножильный 24 - трехжильный 25 Кабель для воздушных линий электропередачи 26 Кабель с изоляцией из сшитого полиэтилена для подводной прокладки 27 Методика предварительного выбора типа кабеля для изготовления на заказ 28 Техническая информация 29 Активное и индуктивное сопротивление 30 Рабочая емкость 31 Ток короткого замыкания 31 Значения токов короткого замыкания 32 - для кабелей с изоляцией из сшитого полиэтилена 32 - для медного экрана 33 Корректирующие коэффициенты при групповой прокладке 34 - для кабелей, проложенных в земле 34 - для многожильных кабелей 35		
Бронированные трехжильные кабели 20 Кабели, не распространяющие горение, не содержащие галогенов 23 - одножильный 24 - трехжильный 25 Кабель для воздушных линий электропередачи 26 Кабель с изоляцией из сшитого полиэтилена для подводной прокладки 27 Методика предварительного выбора типа кабеля для изготовления на заказ 28 Техническая информация 29 Активное и индуктивное сопротивление 30 Рабочая емкость 31 Ток короткого замыкания 31 Значения токов короткого замыкания 32 - для кабелей с изоляцией из сшитого полиэтилена 32 - для медного экрана 33 Корректирующие коэффициенты при групповой прокладке 34 - для кабелей, проложенных в земле 34 - для многожильных кабелей 35		
Кабели, не распространяющие горение, не содержащие галогенов 23 - одножильный 24 - трехжильный 25 Кабель для воздушных линий электропередачи 26 Кабель с изоляцией из сшитого полиэтилена для подводной прокладки 27 Методика предварительного выбора типа кабеля для изготовления на заказ 28 Техническая информация 29 Активное и индуктивное сопротивление 30 Рабочая емкость 31 Ток короткого замыкания 31 Значения токов короткого замыкания 32 - для кабелей с изоляцией из сшитого полиэтилена 32 - для медного экрана 33 Корректирующие коэффициенты при групповой прокладке 34 - для кабелей, проложенных в земле 34 - для многожильных кабелей 35	- трехжильный	18
- одножильный 24 - трехжильный 25 Кабель для воздушных линий электропередачи 26 Кабель с изоляцией из сшитого полиэтилена для подводной прокладки 27 Методика предварительного выбора типа кабеля для изготовления на заказ 28 Техническая информация 29 Активное и индуктивное сопротивление 30 Рабочая емкость 31 Ток короткого замыкания 31 Значения токов короткого замыкания 32 - для кабелей с изоляцией из сшитого полиэтилена 32 - для медного экрана 33 Корректирующие коэффициенты при групповой прокладке 34 - для кабелей, проложенных в земле 34 - для многожильных кабелей 35	Бронированные трехжильные кабели	20
- трехжильный .25 Кабель для воздушных линий электропередачи .26 Кабель с изоляцией из сшитого полиэтилена для подводной прокладки .27 Методика предварительного выбора типа кабеля для изготовления на заказ .28 Техническая информация .29 Активное и индуктивное сопротивление .30 Рабочая емкость .31 Ток короткого замыкания .31 Значения токов короткого замыкания .32 - для кабелей с изоляцией из сшитого полиэтилена .32 - для медного экрана .33 Корректирующие коэффициенты при групповой прокладке .34 - для кабелей, проложенных в земле .34 - для многожильных кабелей .35		
Кабель для воздушных линий электропередачи 26 Кабель с изоляцией из сшитого полиэтилена для подводной прокладки 27 Методика предварительного выбора типа кабеля для изготовления на заказ 28 Техническая информация 29 Активное и индуктивное сопротивление 30 Рабочая емкость 31 Ток короткого замыкания 31 Значения токов короткого замыкания 32 - для кабелей с изоляцией из сшитого полиэтилена 32 - для медного экрана 33 Корректирующие коэффициенты при групповой прокладке 34 - для кабелей, проложенных в земле 34 - для многожильных кабелей 35		
Кабель с изоляцией из сшитого полиэтилена для подводной прокладки .27 Методика предварительного выбора типа кабеля для изготовления на заказ .28 Техническая информация .29 Активное и индуктивное сопротивление .30 Рабочая емкость .31 Ток короткого замыкания .31 Значения токов короткого замыкания .32 - для кабелей с изоляцией из сшитого полиэтилена .32 - для медного экрана .33 Корректирующие коэффициенты при групповой прокладке .34 - для кабелей, проложенных в земле .34 - для многожильных кабелей .35	- трехжильный	25
Методика предварительного выбора типа кабеля для изготовления на заказ 28 Техническая информация 29 Активное и индуктивное сопротивление 30 Рабочая емкость 31 Ток короткого замыкания 31 Значения токов короткого замыкания 32 - для кабелей с изоляцией из сшитого полиэтилена 32 - для медного экрана 33 Корректирующие коэффициенты при групповой прокладке 34 - для кабелей, проложенных в земле 34 - для многожильных кабелей 35		
Техническая информация 29 Активное и индуктивное сопротивление 30 Рабочая емкость 31 Ток короткого замыкания 31 Значения токов короткого замыкания 32 - для кабелей с изоляцией из сшитого полиэтилена 32 - для медного экрана 33 Корректирующие коэффициенты при групповой прокладке 34 - для кабелей, проложенных в земле 34 - для многожильных кабелей 35	Кабель с изоляцией из сшитого полиэтилена для подводной прокладки	27
Активное и индуктивное сопротивление 30 Рабочая емкость 31 Ток короткого замыкания 31 Значения токов короткого замыкания 32 - для кабелей с изоляцией из сшитого полиэтилена 32 - для медного экрана 33 Корректирующие коэффициенты при групповой прокладке 34 - для кабелей, проложенных в земле 34 - для многожильных кабелей 35	Методика предварительного выбора типа кабеля для изготовления на заказ	28
Рабочая емкость .31 Ток короткого замыкания .31 Значения токов короткого замыкания .32 - для кабелей с изоляцией из сшитого полиэтилена .32 - для медного экрана .33 Корректирующие коэффициенты при групповой прокладке .34 - для кабелей, проложенных в земле .34 - для многожильных кабелей .35	Техническая информация	29
Ток короткого замыкания 31 Значения токов короткого замыкания 32 - для кабелей с изоляцией из сшитого полиэтилена 32 - для медного экрана 33 Корректирующие коэффициенты при групповой прокладке 34 - для кабелей, проложенных в земле 34 - для многожильных кабелей 35	Активное и индуктивное сопротивление	30
Значения токов короткого замыкания .32 - для кабелей с изоляцией из сшитого полиэтилена .32 - для медного экрана .33 Корректирующие коэффициенты при групповой прокладке .34 - для кабелей, проложенных в земле .34 - для многожильных кабелей .35	Рабочая емкость	31
- для кабелей с изоляцией из сшитого полиэтилена	Ток короткого замыкания	31
- для медного экрана	Значения токов короткого замыкания	32
Корректирующие коэффициенты при групповой прокладке	- для кабелей с изоляцией из сшитого полиэтилена	32
- для кабелей, проложенных в земле	- для медного экрана	33
- для многожильных кабелей	Корректирующие коэффициенты при групповой прокладке	34
•••	•	
- для одножильных кабелей	- для многожильных кабелей	35
	- для одножильных кабелей	36

Полный комплекс систем передачи и распределения энергии

10 лет назад компания "Алкатель Кабель" (NEXANS - ее новое название) - крупнейший производитель кабельной продукции в Европе - начала сотрудничать с Россией. Сейчас более 40 кабельных заводов Франции, Германии, Норвегии, Швейцарии, Бельгии и Турции, входящих в группу NEXANS, поставляют на российский рынок СИП типа "Торсада", кабели с изоляцией из сшитого полиэтилена на среднее (6–35 кВ) и высокое (110–500 кВ) напряжение, подводные кабельные системы, кабельную арматуру и т.д.

За эти годы кабельными системами производства промышленной группы NEXANS были оснащены аэропорты и нефтеперегонные заводы, электрические сети и атомные станции, отели, музеи и нефтепроводы. От Краснодара до Анадыря в самых разных условиях работают изделия NEXANS. К тому же компания является одним из лидеров в производстве СКС (структурированных кабельных систем). NEXANS гордится участием в таких престижных, сложных проектах в области

энергетики, как строительство Третьего транспортного кольца в Москве, реконструкция Русского музея, космодром Байконур.

Компания NEXANS инвестирует значительные средства в новое оборудование. Это позволяет нам гарантировать высокий уровень технологического процесса, материалов и продукции. Все производство подвергается сквозному контролю качества и соответствует стандартам ISO 9001 в отношении процессов разработки, внедрения, производства, установки и ввода в эксплуатацию продукции.

Качество является неотъемлемой составной частью общей культуры ведения бизнеса нашей компании.

Фундаментом нашей плодотворной работы является уникальный научный потенциал исследовательских центров NEXANS, использующих новейшие технологии и уникальное лабораторное оборудование.

Надежность и качество наших кабелей подтверждено соответствующими сертификатами и разрешениями.

Основные продукты и услуги

Кабели низкого напряжения

Кабели с ПВХ-изоляцией или с изоляцией из сшитого полиэтилена.

Кабели среднего напряжения

Кабели с изоляцией из сшитого полиэтилена, в полиэтиленовой, ПВХ или не содержащей галогенов, не распространяющей горение оболочке. Кабели могут быть изготовлены с продольной герметизацией.

Кабели высокого напряжения

Кабели с изоляцией из сшитого полиэтилена с продольной герметизацией напряжением до 525 кВ. По запросу кабели могут быть изготовлены с включением в тело кабеля оптоволоконных линий.

Подводные кабели Специальные кабели

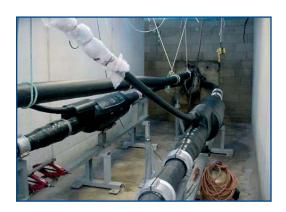
Кабели для электрофильтров. Шахтные кабели.

Огнестойкие, не содержащие галогенов кабели.

Самонесущие изолированные провода "Торсада" на напряжение 0,6/1 кВ

Самонесущий изолированный кабель "Торсада" на напряжение 6-35 кВ

Нагревательные кабели (Теплые полы, системы антиобледенения, системы обогрева трубопроводов и т.п.)

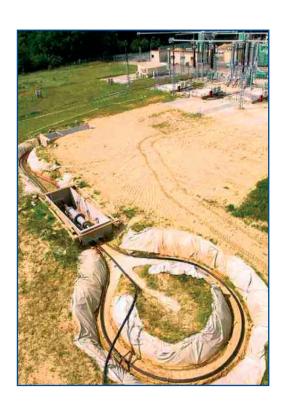

Муфты для кабелей среднего и высокого напряжения (Муфты термоусадочные и холодной усадки, производимые на одном из наших заводов Euromold.)

Компактные провода AERO- Z^{e^*} для высоковольтных линий электропередачи

Полный комплекс услуг по обучению персонала, монтажу и шефмонтажу кабельных систем и сопутствующего оборудования

Проведение испытаний и диагностика кабельных систем

В данном каталоге приведены силовые кабели с изоляцией из сшитого полиэтилена, предназначенные для передачи и распределения электрической энергии в стационарных установках, на переменное напряжение 10, 20 и 35 кВ частотой 50 Гц для сетей с изолированной нейтралью категорий А, В и С по международному стандарту МЭК 60183/ 1984 г. Кабели по конструктивному исполнению, техническим характеристикам и эксплуатационным свойствам соответствуют международному стандарту МЭК 60502-2/1997 г. и российским ТУ 16.К71-300-2000. Климатическое исполнение кабелей У, УХЛ, категории размещения 1 и 2 по ГОСТ 15 150-69, а также в зависимости от конструктивного исполнения могут прокладываться в земле и воде. Примеры записи условного обозначения приведены на странице 4. Методика предварительного выбора типа кабеля для изготовления на заказ приведена на странице 26.


При монтаже и эксплуатации кабелей с изоляцией из сшитого полиэтилена рекомендуется руководствоваться типовыми инструкциями на данный тип кабельной продукции.

Сравнение кабелей с пропитанной бумажной изоляцией и кабелей с изоляцией из сшитого полиэтилена

Основными преимуществами кабеля с СПЭ-изоляцией являются:

- · большая пропускная способность за счет увеличения допустимой температуры жилы (допустимые токи нагрузки в зависимости от условий прокладки на 15–30 % больше, чем у кабеля с пропитанной бумажной изоляцией);
- большой ток короткого замыкания;
- · меньший вес, диаметр и радиус изгиба, что обеспечивает легкость прокладки кабеля как в кабельных сооружениях, так и в земле на сложных трассах;
- возможность вести прокладку кабеля при температуре до -20 °C без предварительного подогрева благодаря использованию полимерных материалов для изоляции и оболочки;
- низкая удельная повреждаемость (практика применения кабеля с СПЭ-изоляцией показывает, что она как минимум на 1–2 порядка ниже, чем у кабеля с бумажно-пропитанной изоляцией);
- · отсутствие каких-либо жидких компонентов, благодаря этому уменьшается время и снижается стоимость прокладки и монтажа;
- · однофазная конструкция, позволяющая изготавливать кабель с жилой сечением до 800 мм², оптимальным для передачи большой мощности;
- большие строительные длины до 3000 м.

Характеристики	Кабель с СПЭ-изоляцией 6-35 кВ	Кабель с бумажной изоля- цией		
	0-35 KB	10 кВ	20–35 кВ	
Длительно допустимая температура, °С	90	70	65	
Допустимый нагрев в аварийном режиме, °C	130	90	65	
Предельно допустимая температура при протекании тока K3, °C	250	200	130	
Температура при прокладке без предварительного подогрева, не ниже, °C	-20	0	0	
Относительная диэлектрическая проницаемость ϵ при 20 °C	2,4	4,0	4,0	
Коэффициент диэлектрических потерь tg δ при 20 °C	0,001	0,008	0,006	
Разница уровней на трассе прокладки, м	не ограничено	15	15	

Маркировка силовых кабелей по стандарту VDE

	N	Немецкий стандарт. Кабель с медной жилой специальным символом не обозначается
	F	Изолированный воздушный кабель (N F A2X 4x250,6/1 кВ)
Жила	Α	Алюминиевая жила (N A YY 4x95 SE 0,6/1 кВ)
	Y	Изоляция из поливинилхлоридного (ПВХ) пластиката (NA Y Y 4x95 SE 0,6/1 кВ)
Изоляция	2X	Изоляция из сшитого полиэтиоена (XLPE) (N 2X SY 1×150 RM/25 12/20 кВ)
	НХ	Изоляция из сшитой композиции пониженной горючести, не содержащей галогенов (N HX MH 3x25 RM-16 300-500B)
Концентрический проводник	С	Концентрический проводник из медных проволок и медной ленты, намотанных по спирали (NYCY 3x4 RE/4 0,6/1 kV)
Металлический экран	S	Экран из медных проволок и медной ленты, намотанных по спирали (N2X S Y 1435 RM/16 6/10 kV)
Motabilifiaeckiii skpun	SE	Экран из медной проволоки и медной ленты вокруг каждой жилы кабеля, намотанных по спирали (N2X SE Y 3Ч120 RM/16 6/10 kV)
Водоблокирующие	(F)	Водонепроницаемый экран из водонабухающей ленты, обеспечивающий продольную герметизацию (NA2XS(F)2Y 1x150 RM/25 12/20 кВ)
элементы	(FL)	Водонепроницаемый экран из водонабухающей ленты, обеспечивающий продольную герметизацию, и экран из алюмополимерной ленты (NA2XS(FL)2Y 1x150 RM/25 12/20 кВ)
	В	Броня из двух стальных оцинкованных лент (2XSY B Y 3x120 RM/16 6/10 кВ)
Enoug	R	Броня из круглых стальных оцинкованных проволок (NY R Y 4x70 SM 0,6/1 кВ)
Броня	F	Броня из плоских стальных оцинкованных проволок (NYFGY 3x70 SM 3,6/6 кВ)
	G	Броня из стальной оцинкованной ленты, наложенной с зазором (NYF G Y 3x70 RM/16 6/10 кВ)
	K	Оболочка из свинца (NY K Y 4x16 RE 0,6/1 кВ)
	Υ	Оболочка из ПВХ-пластиката (NAY Y 4x95 SE 0,6/1 кВ)
Оболочка	2Y	Оболочка из полиэтилена (NA2XS 2Y 1x150 RM/25 12/20 кВ)
	Н	Оболочка из композиции пониженной горючести, не содержащая галогенов (N2XSE H 3x120 RM/16 6/10 кВ)
Несущий элемент	Т	Несущий элемент (A2XSY T 3x1x50 RM/16 6/10 кВ)

Примечание: Для точного определения марки необходимо знать следующие величины: материал жилы, количество жил, сечение и форму жил, номинальное напряжение $U_{\rm O}/U$, сечение и исполнение экрана, материал оболочки. Если необходима броня, нужно выбрать тип брони.

Маркировка жил в кабелях среднего напряжения

Маркировка не предусмотрена. В общем изоляция окрашена в свой естественный цвет.

Цвет оболочки

У кабелей напряжением 6-35 кВ:

ПВХ-оболочка – красная, ПЭ-оболочка – черная.

Таблица 1. Характеристики барабанов

Номер	Диаметр	Диаметр	Макс.	Вес
	шейки,	шейки,	ширина,	барабана,
барабана	MM	MM	MM	КГ
Стандартны	е барабаны			
071	710	355	520	25
081	800	400	520	31
091	900	450	690	47
101	1000	500	710	<i>7</i> 1
121	1250	630	890	144
141	1400	710	890	175
161	1600	800	1100	280
181	1800	1000	1100	380
201	2000	1250	1350	550
221	2240	1400	1450	710
250	2500	1400	1450	875
251	2500	1600	1450	900
281	2800	1800	1635	1175
Усиленные б	барабаны			
078	710	355	520	28
088	800	400	520	35
098	900	450	690	51
108	1000	500	710	78
120	1250	630	890	165
140	1400	710	890	199
160	1600	800	1100	309
180	1800	1000	1100	413
200	2000	1250	1350	600
205	2000	1250	1350	588
220	2240	1400	1450	750
225	2240	1400	1450	753
255	2500	1400	1450	923
256	2500	1250	1350	925
285	2800	1800	1635	1240

Конструкция жилы

RE: круглая цельнотянутая жила R – круглая, E – цельнотянутая

RM: круглая многопроволочная жила R – круглая, M – многопроволочная

SE: секторная цельнотянутая жила S – секторная, E – цельнотянутая

SM: секторная многопроволочная жила S – секторная, M – многопроволочная

Расчет номинального тока

Максимальное допустимое длительное напряжение

Таблица 2

	Макс	имальное напряжен	ие Um, кВ		
Номинальное		Однофазн	ая система	Импульсное испытательное напряжение, кВ	
напряжение Uo/U, кВ	3-фазная система	Обе фазы изолированы	Одна фаза заземлена		
6/10	12	14	7	75	
12/20	24	28	14	125	
20,3/35	42	49	24,5	198	

Uo – фазное напряжение U – линейное напряжение

Пояснения по расчету номинального тока

Тепло, выделяемое кабелем в данных условиях, должно быть полностью поглощено окружающей средой в любой точке прокладки кабеля, соответственно исходя из этих условий должна быть рассчитана токовая нагрузка.

Номинальные токи, приведенные в таблицах, рассчитаны в со-

ответствии со стандартами МЭК 60287 и DIN VDE с учетом высыхания почвы.

Значения номинальных токов для кабелей, проложенных в земле, рассчитаны для стандартных условий прокладки, соответственно данными значениями можно пользоваться без учета корректирующих факторов в большинстве случаев: (см. таблицу 2a).

Таблица 2а

Коэффициент нагрузки	0,7
Термическое сопротивление почвы	1,0 К∙м/Вт (сырая среда)
	2,5 К∙м/Вт (сухая среда)
Температура почвы	20 °C
Число кабельных систем	1
Глубина прокладки	70 см

Таблица 26

Расстояние от стен, пола или потолка	2 см
Расстояние между соседними кабелями	2 x d
Вертикальное расстояние между кабелями, расположенными друг	2 x d
над другом	
Вертикальное расстояние между кабельными системами	30 см
Изменение окружающей температуры, вызванное выделением те-	
пла кабелем, должно приниматься во внимание, если не соблюдены	
достаточные расстояния и не обеспечена достаточная вентиляция.	

Значения номинальных токов приведены для кабелей, проложенных в земле. Боле того, предполагается, что почва может высохнуть на ограниченных участках, где поверхность кабелей может достигнуть температур, способных привести к высыханию окружающей кабель почвы.

При прокладке в воздухе расчеты делаются исходя из коэффициента нагрузки, равного 1,0. Температура принимается равной 30 °С. Предполагается, что окружающая среда не будет препятствовать теплоотдаче кабеля и что около кабеля отсутствуют внешние источники тепла. Эти условия прокладки соответствуют таблице 26.

Групповая прокладка кабеля, защитное покрытие, различные окружающие температуры или коэффициенты нагрузки могут значительно повлиять на величину номинального тока. Корректирующие коэффициенты при групповой прокладке в земле при температуре 20 °C приведены для коэффициента нагрузки 0,7 и коэффициента нагрузки 1,0 на странице 34. Для других условий корректирующий коэффициент должен быть посчитан в соответствии со стандартом DIN VDE 0276-1000. По запросу данные значения могут быть рассчитаны нашими специалистами.

Корректирующие коэффициенты для кабелей, проложенных в воздухе, приведены на странице 36.

В случае если необходимо рассчитать номинальную нагрузку для специфических условий, нужно обратиться к специалистам NEXANS.

Значения токов короткого замыкания

Величины токов короткого замыкания (КЗ) для всех типов кабелей и сечений проводников в зависимости от времени протекания КЗ и вида КЗ приведены в таблице 9 на странице 31 и на диаграмме на странице 32. Эти величины были рассчитаны исходя из температурных условий, приведенных в таблице 3. Токи короткого замыкания для медных экранов кабелей с изоляцией из сшитого полиэтилена представлены на странице 33.

Тип изоляции	Тип кабеля и номи-		ература нагрева ящих жил, °С	Плотность односекундного тока короткого замыкания, А/мм²		
17111 7100717127171	нальное напряжение	до короткого замыкания ¹⁾	короткое замыкание	для меди	для алюминия	
спэ	Одножильные и мно- гожильные кабели	90	250 ²⁾	143	94	

¹¹ Максимальные температуры проводника кабелей при нормальных условиях нагрузки согласно стандарту DIN VDE.

 $^{^{21}}$ Для паяных соединений температура тока короткого замыкания не должна превышать 160 °C.

Инструкции по прокладке

Допустимый радиус изгиба

Во время прокладки радиус изгиба кабеля должен быть не меньше значений, приведенных в таблице 4.

При одиночном изгибе (например, при изгибе кабеля по шаблону) этот радиус может быть уменьшен наполовину. При изгибе по шаблону изгибаемый участок кабеля должен быть прогрет до температуры 30 °C.

Допустимое усилие натяжения кабеля

При укладке кабеля с применением техники особое внимание должно быть уделено соблюдению допустимого усилия натяжения. Формула для расчета этой величины приведена в таблице 5. В случае одновременной прокладки одножильных кабелей с помощью натяжительного устройства общее усилие натяжения должно быть равно усилию, прикладываемому к одному кабелю.

S = общее сечение жил в мм² (без учета экрана и концентрической жилы).

D = внешний диаметр кабеля в мм.

Допустимая температура прокладки

При прокладке температура кабелей должна быть не ниже следующих величин:

Кабели в ПВХ-оболочке -5 °C Кабели в ПЭ-оболочке -20 °C

При более низких температурах кабель должен быть предварительно прогрет до необходимой температуры. Для этого кабель может быть выдержан в теплом помещении (при температуре 20 °C) не менее 24 ч или прогрет с помощью специального оборудования (установка горячего воздуха).

Таблица 4

Кабель	Минимальный радиус изгиба (R) для кабелей с полимерной изоляцией
многожильный	15 x D
одножильный	15 x D

Метод натяжения	Конструкция кабеля	Усилие натяжения
Натяжительная головка на проводнике (натяжение за жилу)	Все типы кабелей	P = S · 50 H/мм² (кабель с медной жилой) P = S · 30 H/мм² (кабель с алюминиевой жилой)
Натяжительное захватывающее устройство	Все кабели с проволочной броней (NYFGY, NAYFGY и т.д.)	$P = K \cdot D^2$ $(K = 9 H/MM^2)$
(чулок)	Кабели в металлической оболочке без брони (NYKY)	$P = K \cdot D^2$ (кабель с одной оболочкой $K = 3 \text{ H/мм}^2$)
	Пластмассовые кабели без металлической оболочки, пластмассовые кабели без брони (NYY, NYSEY, NA2XSY и т.д.)	P = S · 50 H/мм² (кабель с медной жилой) P = S · 30 H/мм² (кабель с алюминиевой жилой)

Электрические испытания после прокладки

Целью данных испытаний является контроль за правильностью прокладки кабеля и качеством монтажа кабельной арматуры.

Испытания проводятся по одному из следующих нормативных документов:

```
HD 62081;
MЭK 60502-2;
TY 16.K71-300-2000
```

До начала испытаний должен быть проведен осмотр всех доступных элементов кабельной линии (КЛ), кабельных сооружений и трассы, и при обнаружении дефектов и нарушений они должны быть устранены до начала испытаний.

Рекомендуется после прокладки проводить испытание переменным напряжением частотой 0,1–400 Гц в течение 15 мин:

```
кабели на напряжение 10 кВ – 30 кВ,

- " - 20 кВ – 60 кВ,

- " - 35 кВ – 105 кВ.
```

Допускается испытание переменным напряжением частотой 50 Гц в течение 24 ч:

```
кабели на напряжение 10 кВ – 10 кВ,

- " - 20 кВ – 20 кВ,

- " - 35 кВ – 35 кВ.
```

или постоянным напряжением в течение 15 мин:

```
кабели на напряжение 10 кВ – 60 кВ,

- " - 20 кВ – 80 кВ,

- " - 35 кВ – 120 кВ.
```

Напряжение прикладывается между жилой и экраном каждой фазы, при этом жилы других фаз и экраны всех фаз должны быть заземлены.

После испытания постоянным напряжением необходимо заземлить токопроводящую жилу или соединить ее с медным экраном на время не менее 1 ч.

Пластмассовые оболочки кабелей, проложенных в земле, испытывают между отсоединенными от земли экранами и землей постоянным напряжением в течение 1 мин:

```
кабели с оболочкой из ПЭ – 5 кВ, кабели с оболочкой из ПВХ – 3 кВ.
```

Оболочка кабеля считается выдержавшей испытания, если во время испытаний не произошло пробоя и не было толчков тока утечки и его нарастания после достижения установившегося значения.

N2XS2Y/ NA2XS2Y

Кабель с изоляцией из сшитого полиэтилена в полиэтиленовой оболочке

Стандарты: DIN VDE 0276-620

Конструкция:

Медная или алюминиевая круглая уплотненная жила – экран по жиле из полупроводящего материала – изоляция из пероксидно-сшитого полиэтилена (XLPE) – экран по изоляции из полупроводящего материала – экран из полупроводящей крепированной бумаги – экран из медных проволок, поверх которых спирально наложена медная лента – разделительная лента – полиэтиленовая оболочка

Применение:

Число жил и номинальное сечение, мм²	Сечение	Наружный диаметр, мм		Bec,	Номиналы	ный ток ¹⁾ , А
	экрана, мм²	МИН	Макс	кг/км	в земле	в воздухе
N2XS2Y 6/10kV			Медь б	/10 кВ		
1*35RM/16	16	23	28	820	18 <i>7</i>	197
1*50RM/16	16	24	29	960	220	236
1*70RM/16	16	26	31	1200	268	294
1*95RM/16	16	27	32	1450	320	358
1*120RM/16	16	29	34	1 <i>7</i> 00	363	413
1*150RM/25	25	30	35	2000	405	468
1*185RM/25	25	32	37	2350	456	535
1*240RM/25	25	34	39	2900	526	631
1*300RM/25	25	36	41	3550	591	722
1*400RM/35	35	40	45	4500	662	827
1*500RM/35	35	43	48	5550	744	949
NA2XS2Y 6/10kV			Алюминий	i 6/10 кВ		
1*35RM/16	16	23	28	600	145	153
1*50RM/16	16	24	29	670	1 <i>7</i> 1	183
1*70RM/16	16	26	31	<i>77</i> 0	208	228
1*95RM/16	16	27	32	880	248	278
1*120RM/16	16	29	34	950	283	321
1*150RM/25	25	30	35	1150	315	364
1*185RM/25	25	32	37	1250	357	418
1*240RM/25	25	34	39	1500	413	494
1*300RM/25	25	36	41	1700	466	568
1*400RM/35	35	40	45	2100	529	660
1*500RM/35	35	43	48	2450	602	767

¹⁾ Номинальный ток рассчитан при прокладке треугольником.

Стандартная толщина оболочки 2,5 мм. По просьбе заказчика может быть увеличена.

						11
Число жил и номинальное сечение,	Сечение экрана,	Наружный д	иаметр, мм	Вес, кг/км	Номиналы	ный ток ¹⁾ , А
MM ²	MM ²	МИН	макс	KI / KM	в земле	в воздухе
N2XS2Y 12/20kV			Медь 12	2/20 кВ		
1*35RM/16	16	27	32	1000	189	200
1*50RM/16	16	28	33	1150	222	239
1*70RM/16	16	30	35	1350	271	297
1*95RM/16	16	31 33	36 38	1600 1850	323 367	361
1*120RM/16 1*150RM/25	16 25	34	36 39	2250	409	416 470
1*185RM/25	25	36	41	2600	461	538
1*240RM/25	25	39	44	3150	532	634
1*300RM/25	25	41	46	3800	599	724
1*400RM/35	35	44	49	4750	671	829
1*500RM/35	35	47	52	5800	754	953
NA2XS2Y 12/20kV			Алюминий	12/20 кВ		
1*50RM/16	16	28	33	820	172	185
1*70RM/16	16	30	35	930	210	231
1*95RM/16	16	31	36	1050	251	280
1*120RM/16	16	33	38	1150	285	323
1*150RM/25	25	34	39	1350	319	366
1*185RM/25	25	36	41	1500	361	420
1*240RM/25	25	39	44	1 <i>7</i> 50	417	496
1*300RM/25	25	41	46	2000	471	569
1*400RM/35 1*500RM/35	35 35	44 47	49 52	2350 2800	535 609	660 766
N2XS2Y 20,3/35kV			Медь 20,	.3/35 кВ		
1*50RM/16	16	33	38	1350	225	241
1*70RM/16	16	35	40	1600	274	299
1*95RM/16	16	36	41	1900	327	363
1*120RM/16	16	38	43	2200	3 <i>7</i> 1	418
1*150RM/25	25	39	44	2550	414	472
1*185RM/25	25	41	46	2950	466	539
1*240RM/25	25	43	48	3500	539	635
1*300RM/25	25	46	51	4150	606	725
1*400RM/35 1*500RM/35	35 35	49 52	54 57	5150 6200	680 765	831 953
NA2XS2Y	33	32			703	733
20,3/35kV			Алюминий 2			
1*50RM/16	16	33	38	1100	174	187
1*70RM/16	16	35	40	1200	213	232
1*95RM/16	16	36	41	1350	254	282
1*120RM/16 1*150RM/25	16 25	38 39	43 44	1450 1700	289 322	325 367
1*185RM/25	25 25	41	46	1850	364	421
1*240RM/25	25	43	48	2050	422	496
1*300RM/25	25	46	51	2350	476	568
1*400RM/35	35	49	54	2800	541	650
1*500RM/35	35	52	57	3200	616	764

 $^{^{1}}$ Номинальный ток рассчитан при прокладке треугольником.

Стандартная толщина оболочки 2,5 мм. По просьбе заказчика может быть увеличена.

N2XS(F)2Y/ NA2XS(F)2Y

Кабель с изоляцией из сшитого полиэтилена в полиэтиленовой оболочке с продольной герметизацией

Стандарты: DIN VDE 0276-620

м Конструкция:

Медная или алюминиевая круглая уплотненная жила – экран по жиле из полупроводящего материала – изоляция из пероксидно-сшитого полиэтилена (XLPE) – экран по изоляции из полупроводящего материала – экран из полупроводящей водонабухающей ленты – экран из медных проволок, поверх которых спирально наложена медная лента – разделительная лента – полиэтиленовая оболочка

Применение:

В грунтах повышенной влажности, в сырых и частично затапливаемых помещениях, в кабельных коллекторах

Число жил и номинальное сечение.	Сечение экрана,	Наружный ,	диаметр, мм	Bec,	Номиналы	ный ток ¹⁾ , А
MM ²	MM ²	МИН	макс	кг/км	в земле	в воздухе
N2XS(F)2Y 6/10kV			Медь б	/10 кВ		
1*25RM/16 1*35RM/16	16 16	22 23	27 28	710 820	1 <i>57</i> 18 <i>7</i>	163 197
1*50RM/16	16	24	29	960	220	236
1*70RM/16	16	26	31	1200	268	294
1*95RM/16	16	27	32	1450	320	358
1*120RM/16 1*150RM/25	16 25	29 30	34 35	1 <i>7</i> 00 2000	363 405	413 468
1*185RM/25	25 25	32	35 37	2350	456	535
1*240RM/25	25	34	39	2900	526	631
1*300RM/25	25	36	41	3550	591	722
1*400RM/35	35	40	45	4500	662	827
1*500RM/35	35	43	48	5550	744	949
NA2XS(F)2Y 6/10kV			Алюминий	й 6/10 кB		
1*35RM/16	16	23	28	600	145	153
1*50RM/16	16	24	29	670	171	183
1*70RM/16	16	26 27	31 32	770	208 248	228 278
1*95RM/16 1*120RM/16	16 16	27 29	32	880 950	283	321
1*150RM/25	25	30	35	1150	315	364
1*185RM/25	25	32	3 <i>7</i>	1250	357	418
1*240RM/25	25	34	39	1500	413	494
1*300RM/25	25	36	41	1 <i>7</i> 00	466	568
1*400RM/35	35	40	45	2100	529	660
1*500RM/35	35	43	48	2450	602	767

¹⁾ Номинальный ток рассчитан при прокладке треугольником.

Стандартная толщина оболочки 2,5 мм. По просьбе заказчика может быть увеличена.

Число жил и	Сечение	Наружный д	циаметр, мм	Вес,	Номиналы	ный ток ¹⁾ , А
номинальное сечение, мм²	экрана, мм²	МИН	макс	кт/км	в земле	в воздухе
N2XS(F)2Y 12/20kV			Медь 12	2/20 кВ		
1*35RM/16 1*50RM/16 1*70RM/16 1*95RM/16 1*120RM/16 1*150RM/25 1*185RM/25 1*240RM/25 1*300RM/25 1*400RM/35 1*500RM/35	16 16 16 16 25 25 25 25 25 35	27 28 30 31 33 34 36 39 41 44	32 33 35 36 38 39 41 44 46 49 52	1000 1150 1350 1600 1850 2250 2600 3150 3800 4750 5800	189 222 271 323 367 409 461 532 599 671 754	200 239 297 361 416 470 538 634 724 829 953
NA2XS(F)2Y 12/20kV			Алюминий	12/20 кВ		
1*50RM/16 1*70RM/16 1*95RM/16 1*120RM/16 1*150RM/25 1*185RM/25 1*240RM/25 1*300RM/25 1*400RM/35 1*500RM/35	16 16 16 16 25 25 25 25 25 35	28 30 31 33 34 36 39 41 44	33 35 36 38 39 41 44 46 49 52	820 930 1050 1150 1350 1500 1750 2000 2350 2800	172 210 251 285 319 361 417 471 535	185 231 280 323 366 420 496 569 660 766
N2XS(F)2Y 20,3/35kV			Медь 20,	.3/35 кВ		
1*50RM/16 1*70RM/16 1*95RM/16 1*120RM/16 1*150RM/25 1*185RM/25 1*240RM/25 1*300RM/25 1*400RM/35 1*500RM/35	16 16 16 16 25 25 25 25 25 35	33 35 36 38 39 41 43 46 49 52	38 40 41 43 44 46 48 51 54	1350 1600 1900 2200 2550 2950 3500 4150 5150 6200	225 274 327 371 414 466 539 606 680 765	241 299 363 418 472 539 635 725 831 953
NA2XS(F)2Y 20,3/35kV			Алюминий 2	20,3/35 кВ		
1*50RM/16 1*70RM/16 1*95RM/16 1*120RM/16 1*150RM/25 1*185RM/25 1*240RM/25 1*300RM/25 1*400RM/35 1*500RM/35	16 16 16 16 25 25 25 25 25 35	33 35 36 38 39 41 43 46 49 52	38 40 41 43 44 46 48 51 54	1100 1200 1350 1450 1700 1850 2050 2350 2800 3200	174 213 254 289 322 364 422 476 541 616	187 232 282 325 367 421 496 568 650 764

 $^{^{1)}}$ Номинальный ток рассчитан при прокладке треугольником.

Стандартная толщина оболочки 2,5 мм. По просьбе заказчика может быть увеличена.

N2XS(FL)2Y/ NA2XS(FL)2Y

Кабель с изоляцией из сшитого полиэтилена в полиэтиленовой оболочке с продольной и поперечной герметизацией

Стандарты: DIN VDE 0276-620

Конструкция:

Медная или алюминиевая круглая уплотненная жила – экран по жиле из полупроводящего материала – изоляция из пероксидно-сшито-го полиэтилена (XLPE) – экран по изоляции из полупроводящего материала – экран из полупроводящей водонабухающей ленты – экран из медных проволок, поверх которых спирально наложена медная лента – паминированная алюминиевая лента – полиэтиленовая оболочка

м Применение:

В грунтах повышенной влажности, в сырых и частично затапливаемых помещениях, в кабельных коллекторах

Число жил и номинальное сечение,	Сечение	Сечение Наружный ди		Bec,	Номинальный ток ¹⁾ , А		
мм ²	MM ²	МИН	макс	кг/км	в земле	в воздухе	
N2XS(FL)2Y 6/10kV							
1*35RM/16 1*50RM/16 1*70RM/16 1*95RM/16 1*120RM/16 1*150RM/25 1*185RM/25 1*240RM/25 1*300RM/25 1*400RM/35 1*500RM/35	16 16 16 16 25 25 25 25 25 35	24 25 27 28 30 31 33 35 37 41	29 30 32 33 35 36 38 40 42 46 49	870 1050 1300 1550 1800 2100 2450 3000 3650 4600 5600	181 213 260 310 352 393 442 510 572 642 722	191 229 285 347 401 454 519 612 696 802 921	
NA2XS(FL)2Y 6/10kV			Алюминиі	й 6/10 кВ			
1*35RM/16 1*50RM/16 1*70RM/16 1*95RM/16 1*120RM/16 1*150RM/25 1*185RM/25 1*240RM/25 1*300RM/25 1*400RM/35 1*500RM/35	16 16 16 16 25 25 25 25 25	24 25 27 28 30 31 33 35 37 41	29 30 32 33 35 36 38 40 42 46 49	650 730 830 940 1050 1250 1350 1600 1800 2200 2550	141 166 202 241 275 306 346 401 451 513	148 178 221 270 311 353 406 479 547 640 744	

¹⁾ Номинальный ток рассчитан при прокладке треугольником.

Стандартная толщина оболочки 2,5 мм. По просьбе заказчика может быть увеличена.

Число жил и номи-	Сечение	Наружный д	циаметр, мм	Вес,	Номиналы	ный ток ¹⁾ , А
нальное сечение, мм²	экрана, мм²	мин	макс	кг/км	в земле	в воздухе
N2XS(FL)2Y 12/20kV			Медь 12	2/20 кВ		
1*35RM/16 1*50RM/16 1*70RM/16 1*95RM/16 1*120RM/16 1*150RM/25 1*185RM/25 1*240RM/25 1*300RM/25 1*400RM/35 1*500RM/35	16 16 16 16 25 25 25 25 25 35	28 29 31 32 34 35 37 40 42 45 48	33 34 36 37 39 40 42 45 47 50 53	1050 1100 1450 1700 1950 2350 2700 3250 3900 4850 5900	183 215 263 313 356 397 447 516 579 651 731	194 232 288 350 404 456 522 615 698 804 924
NA2XS(FL)2Y 12/20kV			Алюминий	12/20 кВ		
1*50RM/16 1*70RM/16 1*95RM/16 1*120RM/16 1*150RM/25 1*185RM/25 1*240RM/25 1*300RM/25 1*400RM/35 1*500RM/35	16 16 16 16 25 25 25 25 25 35	29 31 32 34 35 37 40 42 45 48	34 36 37 39 40 42 45 47 50 53	880 1000 1150 1250 1450 1600 1850 2100 2450 2900	167 204 244 277 309 350 405 455 519	180 224 272 313 355 404 481 548 640 743
N2XS(FL)2Y 20,3/35kV			Медь 20,	3/35 кВ		
1*50RM/16 1*70RM/16 1*95RM/16 1*120RM/16 1*150RM/25 1*185RM/25 1*240RM/25 1*300RM/25 1*400RM/35 1*500RM/35	16 16 16 16 25 25 25 25 25 35	34 36 37 39 40 42 44 47 50 53	39 41 42 44 45 47 49 52 55	1450 1700 2000 2300 2650 3050 3600 4300 5250 6300	218 266 317 360 402 452 522 587 650 742	233 290 352 405 458 523 616 699 806 924
NA2XS(FL)2Y 20,3/35kV			Алюминий 2	20,3/35 кВ		
1*50RM/16 1*70RM/16 1*95RM/16 1*120RM/16 1*150RM/25 1*185RM/25 1*240RM/25 1*300RM/25 1*400RM/35 1*500RM/35	16 16 16 16 25 25 25 25 25 35	34 36 37 39 40 42 44 47 50 53	39 41 42 44 45 47 49 52 55	1200 1300 1450 1550 1800 1950 2150 2450 2900 3300	169 207 246 280 312 353 409 461 525	181 225 274 315 356 408 481 548 639 741

 $^{^{1)}}$ Номинальный ток рассчитан при прокладке треугольником.

Стандартная толщина оболочки 2,5 мм. По просьбе заказчика может быть увеличена.

N2XSY/ NA2XSY

Кабель с изоляцией из сшитого полиэтилена в поливинилхлоридной оболочке

Стандарты: DIN VDE 0276-620

м Конструкция:

Медная или алюминиевая круглая уплотненная жила – экран по жиле из полупроводящего материала – изоляция из пероксидно-сшито-го полиэтилена (XLPE) – экран по жиле из полупроводящего материала – экран из полупроводящей крепированной бумаги – экран из медных проволок, поверх которых спирально наложена медная лента – разделительная лента – оболочка из ПВХ-пластиката

применение:

В земле, в воздухе, в закрытых помещениях, в кабельных коллекторах

Число жил и номи-	Сечение	Наружный д	циаметр, мм	Bec,	Номиналы	ный ток ¹⁾ , А
нальное сечение,	экрана, мм²	МИН	макс	кг/км	в земле	в воздухе
N2XSY 6/10kV			Медь б	/10 кВ		
1*35RM/16	16	23	28	900	18 <i>7</i>	197
1*50RM/16	16	24	29	1050	220	236
1*70RM/16	16	26	31	1300	268	294
1*95RM/16	16	27	32	1600	320	358
1*120RM/16	16	29	34	1850	363	413
1*150RM/25	25	30	35	2200	405	468
1*185RM/25	25	32	37	2600	456	535
1*240RM/25	25	34	39	3150	526	631
1*300RM/25	25	36	41	3750	591	722
1*400RM/35	35	40	45	4650	662	827
1*500RM/35	35	43	48	<i>575</i> 0	744	949
NA2XSY 6/10kV			Алюминий	й 6/10 кB		
1*35RM/16	16	23	28	700	145	153
1*50RM/16	16	24	29	<i>7</i> 50	1 <i>7</i> 1	183
1*70RM/16	16	26	31	850	208	228
1*95RM/16	16	27	32	950	248	278
1*120RM/16	16	29	34	1050	283	321
1*150RM/25	25	30	35	1300	315	364
1*185RM/25	25	32	37	1400	357	418
1*240RM/25	25	34	39	1650	413	494
1*300RM/25	25	36	41	1850	466	568
1*400RM/35	35	40	45	2300	529	660
1*500RM/35	35	43	48	2650	602	767

¹⁾ Номинальный ток рассчитан при прокладке треугольником.

Стандартная толщина оболочки 2,5 мм. По просьбе заказчика может быть увеличена.

Число жил и номинальное сечение,	Сечение экрана,	Наружный д	циаметр, мм	Bec,	Номиналы	ный ток ¹⁾ , А
MM ²	MM ²	МИН	макс	кг/км	в земле	в воздухе
N2XSY 12/20kV			Медь 12	2/20 кВ		
1*35RM/16	16	27	32	1100	189	200
1*50RM/16	16	28	33	1250	222	239
1*70RM/16	16	30	35	1450	271	297
1*95RM/16	16	31	36	1750	323	361
1*120RM/16	16	33	38	2050	367	416
1*150RM/25	25	34	39	2400	409	470
1*185RM/25	25 25	36 39	41 44	2800 3400	461 532	538
1*240RM/25 1*300RM/25	25 25	41	44	4000	599	634 724
1*400RM/35	35	44	49	4950	671	829
1*500RM/35	35	47	52	6050	754	953
NA2XSY 12/20kV			Алюминий	12/20 кВ		
1*50RM/16	16	28	33	950	172	185
1*70RM/16	16	30	35	1050	210	231
1*95RM/16	16	31	36	1150	251	280
1*120RM/16	16	33	38	1300	285	323
1*150RM/25	25	34	39	1500	319	366
1*185RM/25	25	36	41	1650	361	420
1*240RM/25	25	39	44	1850	417	496
1*300RM/25	25	41	46	2100	471	569
1*400RM/35	35	44	49	2550	535	660
1*500RM/35	35	47	52	2900	609	766
N2XSY 20,3/35kV			Медь 20,	,3/35 кВ		
1*50RM/16	16	33	38	1450	225	241
1*70RM/16	16	35	40	1700	274	299
1*95RM/16	16	36	41	2050	327	363
1*120RM/16	16	38	43	2300	371	418
1*150RM/25	25	39	44	2700	414	472
1*185RM/25	25	41	46	3100	466 530	539
1*240RM/25 1*300RM/25	25 25	43 46	48 51	3700 4350	539 606	635 725
1 *400RM/35	35	49	54	5300	680	831
1 *500RM/35	35	52	5 <i>7</i>	6450	765	953
NA2XSY 20,3/35kV			Алюминий 2			
1*50RM/16	16	33	38	1150	174	187
1*70RM/16	16	35	40	1300	213	232
1*95RM/16	16	36	41	1450	254	282
1*120RM/16	16	38	43	1550	289	325
1*150RM/25	25	39	44	1800	322	36 <i>7</i>
1*185RM/25	25	41	46	1950	364	421
1*240RM/25	25	43	48	2200	422	496
1*300RM/25	25	46	51	2450	476	568
1*400RM/35	35	49	54	2900	541	650
1*500RM/35	35	52	57	3300	616	764

 $^{^{1)}}$ Номинальный ток рассчитан при прокладке треугольником.

Стандартная толщина оболочки 2,5 мм. По просьбе заказчика может быть увеличена.

2XSEY/A2XSEY

Трехжильный кабель с изоляцией из сшитого полиэтилена в ПВХ-оболочке

Стандарты: DIN VDE 0276-620 IEC 60502

Конструкция:

Медная или алюминиевая круглая уплотненная жила – экран по жиле из полупроводящего материала – изоляция из пероксидно-сшитого полиэтилена (XLPE) – экран по изоляции из полупроводящего материала – экран из полупроводящей крепированной бумаги – экран из медных проволок, поверх которых спирально наложена медная лента – внутренняя оболочка из ПВХ, наложенная с одновременным заполнением промежутков между жилами – оболочка из ПВХ-пластиката

Применение:

Число жил и номинальное	Сечение Толщина экрана, наружной обо-		Наружный диаметр,	Вес, кг/км	Номиналь	Номинальный ток, А		
сечение, мм²	MM ²	лочки, мм	MM		в земле	в воздухе		
2XSEY 6/10kV	Медь 6/10 кB							
3*35RM/16	16	2,5	51	2600	213	213		
3*70RM/16	16	2,5	55	3350	261	265		
3*95RM/16	16	2,6	58	4200	312	322		
3*120RM/16	16	2,8	62	5050	355	3 <i>7</i> 0		
3*150RM/25	25	2,9	66	6000	399	420		
3*185RM/25	25	3	69	<i>7</i> 200	451	481		
3*240RM/25	25	3,1	75	9000	523	566		
A2XSEY 6/10kV			Алюмин	ий 6/10 кВ				
3*50RM/16	16	2,5	51	1 <i>7</i> 00	165	165		
3*70RM/16	16	2,5	55	2050	203	206		
3*95RM/16	16	2,6	58	2500	242	249		
3*120RM/16	16	2,8	62	2850	276	288		
3*150RM/25	25	2,9	66	3250	309	326		
3*185RM/25	25	3	69	3 <i>7</i> 50	351	375		
3*240RM/25	25	3,1	75	4600	408	442		

Число жил	Сечение экрана,	Толщина наружной	Наружный	Вес, кг/км	Номиналь	ный ток, А		
и номинальное сечение,	экрана, мм²	оболочки,	диаметр, мм	KI/KM	в земле	в воздухе		
MM ²		MM						
2XSEY 12/20kV	Медь 12/20 кВ							
3*50RM/16	16	2,7	59	4700	216	217		
3*70RM/16	16	2,8	63	5700	264	269		
3*95RM/16	16	3	67	6800	316	326		
3*120RM/16	16	3,1	71	7900	360	377		
3*150RM/25	25	3,2	74	9100	404	426		
3*185RM/25	25	3,3	<i>7</i> 8	1050	457	488		
3*240RM/25	25	3,5	84	12800	532	576		
3*300RM/25	25	3,6	88	15000	600	658		
A2XSEY 12/20kV	Алюминий 12/20 кВ							
3*50RM/16	16	2,7	59	3800	167	168		
3*70RM/16	16	2,8	63	4400	205	209		
3*95RM/16	16	3	67	5000	245	253		
3*120RM/16	16	3,1	<i>7</i> 1	5600	280	293		
3*150RM/25	25	3,2	74	6200	313	331		
3*185RM/25	25	3,3	<i>7</i> 8	7000	356	380		
3*240RM/25	25	3,5	84	8300	415	450		
3*300RM/25	25	3,6	88	9200	470	515		
2XSEY 20,3/35kV			٨	Ледь 20,3/35 н	кВ			
3*50RM/16	16	3,1	70	6100	219	222		
3*70RM/16	16	3,2	74	7200	267	273		
3*95RM/16	16	3,3	<i>7</i> 8	8500	320	330		
3*120RM/16	16	3,4	82	9600	364	379		
3*150RM/25	25	3,6	85	11000	408	428		
3*185RM/25	25	3,7	89	12500	462	490		
3*240RM/25	25	3,8	94	14800	537	578		
3*300RM/25	25	4	99	17500	604	651		
A2XSEY								
20,3/35kV			Алк	оминий 20,3/3	Э КВ			
3*50RM/16	16	3,1	70	5200	170	172		
3*70RM/16	16	3,2	74	5900	207	211		
3*95RM/16	16	3,3	<i>7</i> 8	6600	248	256		
3*120RM/16	16	3,4	82	7200	283	295		
3*150RM/25	25	3,6	85	8000	317	332		
3*185RM/25	25	3,7	89	8900	360	381		
3*240RM/25	25	3,8	94	10100	419	451		
3*300RM/25	25	4	99	11600	472	516		

2XSYBY/A2XSYBY

Трехжильный бронированный кабель с изоляцией из сшитого полиэтилена в ПВХ-оболочке с общим экраном

Стандарты: IEC 60502

м Конструкция:

Медная или алюминиевая круглая уплотненная жила – экран по жиле из полупроводящего материала – изоляция из пероксидно-сшитого полиэтилена (XLPE) – экран по изоляции из полупроводящего материала – полупроводящая лента, намотанная поверх скрученных жил – экран из медных проволок, поверх которых спирально наложена медная лента – внутренняя оболочка из ПВХ-пластиката – броня из двух стальных лент – оболочка из ПВХ-пластиката

применение:

Число жил и номинальное	Сечение экрана,	Толщина внутренней	Толщина стальной	Толщина наружной	Наружный диаметр,	Вес, кг/км		ьный ток,		
сечение, мм²	MM ²	оболочки, мм	ленты, мм	оболочки, мм	MM		в земле	в воздухе		
2XSYBY 6/10kV		Медь 6/10 кВ								
3*50RM/16	16	1,4	0,5	2,6	51	3800	210	206		
3*70RM/16	16	1,5	0,5	2,7	55	4600	261	257		
3*95RM/16	16	1,6	0,5	2,9	59	5600	307	313		
3*120RM/16	16	1,6	0,5	3,0	61	6800	349	360		
3*150RM/25	25	1,7	0,5	3,1	66	7650	392	410		
3*185RM/25	25	1,8	0,5	3,2	69	8950	443	469		
3*240RM/25	25	1,8	0,5	3,4	<i>7</i> 5	11500	513	553		
3*300RM/25	25	2,1	0,8	3,8	80	13350	580	625		
A2XSYBY 6/10kV				Алюмини	й 6/10 кВ					
3*50RM/16	16	1,4	0,5	2,6	51	2900	162	160		
3*70RM/16	16	1,5	0,5	2,7	55	3300	199	199		
3*95RM/16	16	1,6	0,5	2,9	58	3850	238	242		
3*120RM/16	16	1,6	0,5	3,0	62	4600	271	280		
3*150RM/25	25	1 <i>,7</i>	0,5	3,1	66	4800	304	319		
3*185RM/25	25	1,8	0,5	3,2	69	5350	345	365		
3*240RM/25	25	1,8	0,5	3,4	75	6100	401	431		
3*300RM/25	25	2,1	0,8	3,8	75	6750	452	488		

2XSEYBY/A2XSEYBY

Трехжильный бронированный кабель с изоляцией из сшитого полиэтилена в ПВХ-оболочке с жилами в индивидуальном экране

Стандарты: IEC 60502

Конструкция:

Медная или алюминиевая круглая уплотненная жила – экран по жиле из полупроводящего материала – изоляция из пероксидно-сшито-го полиэтилена (XLPE) – экран по изоляции из полупроводящего материала – экран из полупроводящей крепированной бумаги – экран из медных проволок, поверх которых спирально наложена медная лента – внутренняя оболочка из ПВХ-пластиката, наложенная поверх скрученных жил с одновременным заполнением промежутков между жилами – броня из двух стальных лент – оболочка из ПВХ-пластиката

🛤 Применение:

Число жил и номинальное	Сечение экрана,	Толщина внутренней	Толщина стальной	Толщина наружной	Наружный диаметр,	Вес, кг/км		ьный ток,
сечение, мм²	MM ²	оболочки наполнителя, мм	ленты, мм	оболочки, мм	MM		в земле	в воздухе
2XSEYBY 12/20kV				Медь 1	2/20 кВ			
3*50RM/16	16	1,6	0,5	3,0	65	6200	213	214
3*70RM/16	16	1,7	0,5	3,1	69	7300	259	264
3*95RM/16	16	1,7	0,5	3,2	<i>7</i> 3	8400	310	319
3*120RM/16	16	1,8	0,5	3,3	77	9600	353	369
3*150RM/25	25	1,9	0,5	3,3	80	10900	396	417
3*185RM/25	25	1,9	0,8	3,6	86	13300	448	478
3*240RM/25	25	2,0	0,8	3,8	92	15800	521	564
3*300RM/25	25	2,1	0,8	3,9	96	18200	588	645
A2XSEYBY 12/20kV				Алюминий	і 12/20 кВ			
3*50RM/16	16	1,6	0,5	3,0	65	5300	165	166
3*70RM/16	16	1,7	0,5	3,1	69	6000	201	205
3*95RM/16	16	1,7	0,5	3,2	<i>7</i> 3	6600	240	248
3*120RM/16	16	1,8	0,5	3,3	77	7300	274	287
3*150RM/25	25	1,9	0,5	3,3	80	8000	307	324
3*185RM/25	25	1,9	0,8	3,6	86	9800	349	372
3*240RM/25	25	2,0	0,8	3,8	92	11300	407	441
3*300RM/25	25	2,1	0,8	3,9	96	12400	461	505

Число жил и номинальное	Сечение экрана,	Толщина внутренней	Толщина стальной	Толщина наружной	Наружный диаметр,	Вес, кг/км		іьный ток, Д	
сечение, мм²	MM ²	оболочки мм	ленты, мм	оболочки, мм	MM		в земле	в воздухе	
2XSEYBY 20,3/35kV	Медь 20,3/35 кB								
3*50RM/16	16	1,8	0,5	3,4	76	7900	216	219	
3*70RM/16	16	1,9	0,5	3,5	80	9100	262	268	
3*95RM/16	16	2,0	0,8	3,6	86	11300	314	323	
3*120RM/16	16	2,0	0,8	3,7	90	12600	357	371	
3*150RM/25	25	2,1	0,8	3,8	93	14100	400	419	
3*185RM/25	25	2,2	0,8	4,0	98	15800	453	480	
3*240RM/25	25	2,2	0,8	4,1	102	18300	526	566	
3*300RM/25	25	2,3	0,8	4,3	107	20200	592	638	
A2XSEYBY 20,3/35kV				Алюминий	20,3/35 кВ				
3*50RM/16	16	1,8	0,5	3,4	76	7000	168	170	
3*70RM/16	16	1,9	0,5	3,5	80	7800	203	207	
3*95RM/16	16	2,0	0,8	3,6	86	9400	243	251	
3*120RM/16	16	2,0	0,8	3,7	90	10200	277	284	
3*150RM/25	25	2,1	0,8	3,8	93	11100	311	325	
3*185RM/25	25	2,2	0,8	4,0	98	12200	353	373	
3*240RM/25	25	2,2	0,8	4,1	102	13600	411	442	
3*300RM/25	25	2,3	0,8	4,3	107	15300	463	502	

Кабели, не распространяющие горение, не содержащие галогенов

Данный тип кабелей стали широко применять в 1980-х гг., когда их применение сделали обязательным для опасных зон. Важнейшим достоинством этих кабелей является то, что при горении они практически не оказывают вредного воздействия на здоровье человека.

Как известно, большая часть кабелей, которые используются в мире, имеют оболочку из ПВХ-пластиката. Хотя эти кабели не распространяют горение кабеля (при одиночной прокладке), они выделяют коррозионно-активные вещества в виде образующегося дыма, которые также являются токсичными из-за содержания в них галогенов. В свою очередь, кабели, не содержащие галогенов, благодаря специальным материалам, из которых они изготовлены, не выделяют токсичных веществ. Степень коррозионной активности у них чрезвычайно низка. Также при горении эти кабели не выделяют газа, вызывающего удушье.

Применение: Нефтеперерабатывающие заводы, шахты, туннели, электростанции – места, где существует опасность возникновения пожара.

Конструкция кабеля: В соответствии с существующими стандартами, изоляция из СПЭ. Межфазное заполнение из композиции на основе этилен-винилацетата (ЭВА) (в 3-жильной конструкции). Внешняя оболочка из композиции на основе ЭВА.

Данные виды кабелей могут быть исполнены с броней или без брони.

Испытания кабелей: Каждый вид испытания кабеля в различных условиях проводится в лаборатории завода.

Испытания на нераспространение горения: DIN VDE 0472 часть 804 C, МЭК 60332 часть 3 (Рис. 1).

Газовая коррозия: DIN VDE 0472 часть 813, МЭК 60754 часть 1.

Плотность дыма: МЭК 61034 часть 1.

Рабочая температура: 90 °C.

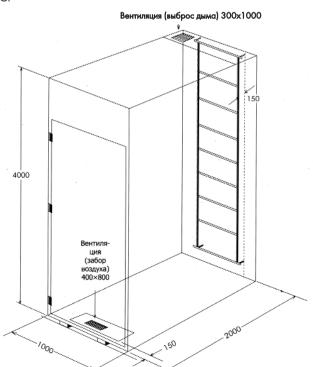


Рис. 1 (размеры в мм.) Камера для испытаний кабелей, проложенных в пучке, на нераспространение горения

N2XSH

Кабель с изоляцией из сшитого полиэтилена в оболочке, не распространяющей горение, не содержащей галогенов

Стандарты:

DIN VDE 0276-622

м Конструкция:

Медная круглая уплотненная жила – экран по жиле из полупроводящего материала – изоляция из пероксидно-сшитого полиэтилена (XLPE) – экран по изоляции из полупроводящего материала – экран из полупроводящей крепированной бумаги – экран из медных проволок, поверх которых спирально наложена медная лента – разделительная лента – оболочка, не распространяющая горение, не содержащая галогенов

🛤 Применение:

На открытом воздухе, в закрытых помещениях, в кабельных коллекторах, при гупповой прокладке

Число жил и номинальное	Сечение	Наружный д	циаметр, мм	Bec,	Номинальный ток в воздухе ¹⁾ ,		
сечение, мм²	экрана, мм²	МИН	макс	кг/км	А А		
N2XSH 6/10kV		Медь 6/10 кB					
1*35RM/16	16	23	28	1000	197		
1*50RM/16	16	24	29	1050	236		
1*70RM/16	16	26	31	1375	294		
1*95RM/16	16	27	32	1650	358		
1*120RM/16	16	29	34	1925	413		
1*150RM/25	25	30	35	2300	468		
1*185RM/25	25	32	37	2650	535		
1*240RM/25	25	34	39	3250	631		
1*300RM/25	25	36	41	3850	722		
1*400RM/35	35	40	45	4850	827		
1*500RM/35	35	43	48	5950	949		

¹⁾ Номинальный ток рассчитан при прокладке треугольником.

Стандартная толщина оболочки 2,5 мм. По просьбе заказчика толщина оболочки может быть увеличена.

Возможно изготовление кабеля на напряжение 12/20 кВ и 20,3/35 кВ. Также возможно изготовление кабеля с алюминиевой жилой.

N2XSEH

Кабель с изоляцией из сшитого полиэтилена в оболочке, не распространяющей горение, не содержащей галогенов

Стандарты:

DIN VDE 0276-622

конструкция:

Медная круглая уплотненная жила – экран по жиле из полупроводящего материала – изоляция из пероксидно-сшитого полиэтилена (XLPE) – экран по изоляции из полупроводящего материала – экран из медных проволок, поверх которых спирально наложена медная лента – внутренняя оболочка, не содержащая галогенов, наложенная поверх скрученных жил с одновременным заполнением промежутков между жилами – оболочка, не распространяющая горение, не содержащая галогенов

🛤 Применение:

На открытом воздухе, в закрытых помещениях, в кабельных коллекторах, при грунтовой прокладке

Число жил и номинальное сечение, мм²	Сечение экрана, мм²	Толщина наруж- ной оболочки, мм	Наружный диа- метр, мм	Вес, кг/км	Номинальный ток в воздухе, А
N2XSH 6/10kV			Медь 6/10	кВ	
3*50RM/16	16	2,5	51	3840	213
3*70RM/16	16	2,5	55	4700	265
3*95RM/16	16	2,6	58	5770	322
3*120RM/16	16	2,8	62	6930	370
3*150RM/25	25	2,9	66	8040	420
3*185RM/25	25	3,0	69	9450	481
3*240RM/25	25	3,1	75	11700	566

По запросу возможно изготовление кабеля с током короткого замыкания до 125 кА.

Возможно изготовление кабеля на напряжение 12/20 кВ и 20,3/35 кВ. Также возможно изготовление кабеля с алюминиевой жилой.

A2XS2YT

Кабель с изоляцией из сшитого полиэтилена для воздушных линий электропередачи

Стандарты:

DIN VDE 0276-620

Конструкция:

Одна фаза: алюминевая круглая уплотненная. Жила – экран по жиле из полупроводящего материала, изоляция – из пероксидно-сшитого полиэтилена (XLPE) – экраноизоляция из полупроводящего материала – экран из полупроводящей крепированной бумаги – экран из медных проволок, поверх которых спирально положена медная лента – оболочка из полиэтилена.

Несущий элемент: жила из проволок из алюминиевого сплава, полиэтиленовая оболочка.

Три однофазных кабеля скручены вокруг несущего элемента

A

Применение:

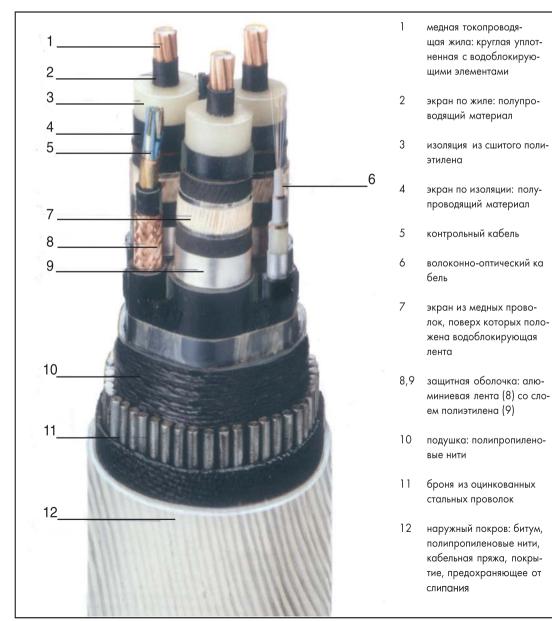
В воздухе, в земле, в помещениях, в кабельных коллекторах

A

Условия для расчета токовой нагрузки:

Температура воздуха 30 °C, скорость ветра 0,6 м/с, коэффициент нагрузки 1,0. Длительно допустимая температура нагрева токопроводящих жил 90 °C. Допустимая температура нагрева токопроводящих жил при коротком замыкании 250 °C

	Одна	фаза		Несущи	й элемент		Скрученн	ый кабель	
Число жил и номинальное сечение, мм²	Толщина наружной оболочки,	Наружный диаметр, мм	Сечение,	Диаметр,	Толщина оболочки, мм	Наружный диаметр, мм	Диаметр,	Масса, кг/км	Номинальный ток при про- кладке в воз- духе, А
				6/	10 кВ				
3x1x50 RM/16	2,5	29	70	10,5	1,0	12,5	66	2310	183
3x1x70 RM/16	2,5	31	70	10,5	1,0	12,5	70	2610	228
3x1x95 RM/16	2,5	32	70	10,5	1,0	12,5	72	2940	278
3x1x120 RM/16	2,5	34	70	10,5	1,0	12,5	75	3150	321
3x1x150 RM/25	2,5	35	70	10,5	1,0	12,5	77	3750	364
3x1x185 RM/25	2,5	37	70	10,5	1,0	12,5	81	4050	418
3x1x240 RM/25	2,5	39	70	10,5	1,0	12,5	85	4800	494
				12 /	20 кВ				
3x1x50 RM/16	2,5	33	70	10,5	1,0	12,5	74	2760	185
3x1x70 RM/16	2,5	35	70	10,5	1,0	12,5	77	3090	231
3x1x95 RM/16	2,5	36	70	10,5	1,0	12,5	79	3450	280
3x1x120 RM/16	2,5	38	70	10,5	1,0	12,5	83	3750	323
3x1x150 RM/25	2,5	39	70	10,5	1,0	12,5	85	4350	366
3x1x185 RM/25	2,5	41	70	10,5	1,0	12,5	88	4800	420
3x1x240 RM/25	2,5	44	70	10,5	1,0	12,5	94	5550	496
					⁄ 35 кВ				
3x1x50 RM/16	2,5	38	70	10,5	1,0	12,5	83	3600	18 <i>7</i>
3x1x70 RM/16	2,5	40	70	10,5	1,0	12,5	87	3900	232
3x1x95 RM/16	2,5	41	70	10,5	1,0	12,5	88	4350	282
3x1x120 RM/16	2,5	43	70	10,5	1,0	12,5	92	4650	325
3x1x150 RM/25	· ·	44	70	10,5	1,0	12,5	94	5400	367
3x1x185 RM/25	2,5	46	70	10,5	1,0	12,5	98	5850	421
3x1x240 RM/25	2,5	48	70	10,5	1,0	12,5	101	6450	496


Кабель с изоляцией из сшитого полиэтилена для подводной прокладки

В зависимости от условий прокладки компания NEXANS может изготовить различные марки подводных кабелей.

Типичная конструкция силового кабеля для подводной прокладки из сшитого полиэтилена на напряжение до 35 кВ со встроенным контрольным и волоконно-оптическим кабелем представлена внизу:

Конструкция кабелей среднего напряжения для подводной прокладки

Основные конструкции кабелей выполнены в соответствии с национальными и международными стандартами (DIN VDE, IEC, ICEA), а также в соответствии с требованиями клиентов. Эти кабели рассчитаны на напряжение от 10 до 35 кВ. Возможно также изготовление кабелей на более высокое напряжение и кабелей с этилен-пропиленовой изоляцией.

Методика предварительного выбора типа кабеля для изготовления на заказ

По Вашему запросу NEXANS может изготовить кабель на заказ с требуемыми конструктивными и техническими характеристиками. Для того чтобы точно определить конструкцию кабеля, необходимо знать следующие характеристики:

Характеристика	Пример
Количество жил (1 или 3)	Трехжильный
Проводник (медь или алюминий)	Алюминий
Номинальное напряжение	10 кВ
Сечение токоведущей жилы (или мощность)	300 mm²
Для трехжильных кабелей: конструкция экрана токоведущих жил (общий или индивидуальный)	Экран у каждой жилы индивидуальный
Сечение экрана (или ток КЗ и время его протекания)	50 mm²
Среда, в которую предполагается прокладывать кабель (земля, воздух, вода) ¹ .	Земля
Необходима ли герметизация (да, если кабель прокладывается в сыром грунте, частично затапливаемых помещениях и т.д.)	Двойная герметизация (болотистая почва).
Должен ли кабель быть в негорючем исполнении	Нет
Необходима ли броня (исполнения F, G или В. Смотри страницу 4)	Да. Броня – двойная стальная лента (исполнение В, см. страницу 4)

Итог: NA2XSE(FL)YB2Y 3*300 RM/50 6/10 кВ

Точная конструкция кабеля может быть посчитана, только если будет известна вся техническая информация по конкретному проекту.

¹ Если кабель предполагается прокладывать под водой, конструкция кабеля по запросу будет подбираться особым образом.

Техническая информация

Активное и реактивное сопротивление кабеля

Активное сопротивление при 20 °C

Таблица 6

	Сопро	тивление
Номинальное сечение, мм ²	Медь, Ом/км	Алюминий, Ом/км
1,5	12,1	-
2,5	7,41	-
4	4,61	-
6	3,08	-
10	1,83	-
16	1,15	1,91
25	0,727	1,20
35	0,524	0,868
50	0,387	0,641
70	0,268	0,443
95	0,193	0,320
120	0,153	0,253
150	0,124	0,206
185	0,0991	0,164
240	0,0754	0,125
300	0,0601	0,100
400	0,0470	0,0778
500	0,0366	0,0605

Сопротивление проводника зависит от температуры окружающей среды.

Сопротивление при определенной температуре рассчитывается следующим образом:

медь:
$$R\delta = R_{20} \cdot \frac{234,5+\delta}{254,5}$$
 ,

алюминий:
$$R\delta \!\!=\!\! R_{\scriptscriptstyle 20} \!\!\cdot\! \frac{228 \!\!+\!\! \delta}{248} \quad ,$$

где δ = текущая температура жилы (°C);

 R_{20} = сопротивление проводника при 20 °C (Ом/км);

 $R\delta$ = сопротивление проводника при δ °C (Oм/км).

Индуктивное сопротивление кабелей с изоляцией из сшитого полиэтилена при 50 Гц

Таблица 7

	Ин	дуктивное сопр	отивление, Ом/	′ĸм		
6/1	О кВ	12/2	20 кВ	20,3/	20,3/35 кВ	
одножильный	многожильный	одножильный	многожильный	одножильный	многожильный	
Стандартный	і кабель и кабе	ль с продольной	і герметизацией	i		
0,133 0,127 0,119 0,114 0,109 0,106 0,102 0,098 0,095 0,091 0,089	0,110 0,103 0,099 0,095 0,092 0,090 0,087 0,084	0,144 0,137 0,129 0,123 0,118 0,114 0,110 0,105 0,102 0,098 0,094	0,123 0,115 0,110 0,106 0,102 0,099 0,095 0,092	0,146 0,137 0,131 0,125 0,121 0,117 0,112 0,108 0,103 0,100	0,135 0,127 0,121 0,116 0,113 0,109 0,104 0,101	
Кабель (продольной и	поперечной гер	метизацией			
0,143 0,136 0,128 0,123 0,118 0,114 0,111 0,106 0,103 0,099		0,153 0,146 0,132 0,132 0,127 0,122 0,118 0,113 0,110 0,105		0,156 0,147 0,140 0,135 0,130 0,126 0,121 0,117 0,112	- - - - - - -	
	Одножильный Стандартный 0,133 0,127 0,119 0,114 0,109 0,106 0,102 0,098 0,095 0,091 0,089 Кабель о 0,143 0,136 0,128 0,123 0,118 0,114 0,111 0,106 0,103	Стандартный кабель и кабелов (Стандартный кабель и кабелов (Стандартный	ОДНОЖИЛЬНЫЙ МНОГОЖИЛЬНЫЙ ОДНОЖИЛЬНЫЙ Стандартный кабель и кабель с продольной 0,133 - 0,144 0,127 0,110 0,137 0,119 0,103 0,129 0,114 0,099 0,123 0,109 0,095 0,118 0,106 0,092 0,114 0,102 0,090 0,110 0,098 0,087 0,105 0,095 0,084 0,102 0,091 - 0,098 0,089 - 0,094 Кабель с продольной и поперечной гер 0,143 - 0,153 0,136 - 0,146 0,128 - 0,132 0,118 - 0,127 0,114 - 0,127 0,114 - 0,122 0,111 - 0,118 0,106 - 0,118 0,106 - 0,113 0,109 - <td< td=""><td>ОДНОЖИЛЬНЫЙ МНОГОЖИЛЬНЫЙ ОДНОЖИЛЬНЫЙ МНОГОЖИЛЬНЫЙ Стандартный кабель и кабель с продольной герметизацией 0,133 - 0,144 - 0,127 0,110 0,137 0,123 0,119 0,103 0,129 0,115 0,114 0,099 0,123 0,110 0,109 0,095 0,118 0,106 0,106 0,092 0,114 0,102 0,098 0,087 0,105 0,095 0,095 0,084 0,102 0,092 0,095 0,084 0,102 0,092 0,095 0,084 0,102 0,092 0,095 0,084 0,102 0,092 0,091 - 0,098 - 0,089 - 0,094 - **CAGEARS C RIPOZONISHOЙ И ПОПЕРВЧНОЙ ГЕРМЕТИЗИНИЕ ПОПЕРВИНИЕ ПОПЕ</td><td>ОДНОЖИЛЬНЫЙ МНОГОЖИЛЬНЫЙ ОДНОЖИЛЬНЫЙ МНОГОЖИЛЬНЫЙ ОДНОЖИЛЬНЫЙ ОДНОМИНЬИВНОМИ ОДНОМИНЬИВНОМИ ОДНОМИНЬИВНОМИ ОДНОМИНЬИВНОМИ ОДНОМИНЬИВНЫМИ ОДНОМИНЬИВНИМИ ОДНОМИНЬИВНИМИ ОДНОМИНЬИВНИМИ ОДНОМИНЬИВНИМИ ОДНОМИНЬИВНИМИ ОДНОМИНЬИВНЫМИ</td></td<>	ОДНОЖИЛЬНЫЙ МНОГОЖИЛЬНЫЙ ОДНОЖИЛЬНЫЙ МНОГОЖИЛЬНЫЙ Стандартный кабель и кабель с продольной герметизацией 0,133 - 0,144 - 0,127 0,110 0,137 0,123 0,119 0,103 0,129 0,115 0,114 0,099 0,123 0,110 0,109 0,095 0,118 0,106 0,106 0,092 0,114 0,102 0,098 0,087 0,105 0,095 0,095 0,084 0,102 0,092 0,095 0,084 0,102 0,092 0,095 0,084 0,102 0,092 0,095 0,084 0,102 0,092 0,091 - 0,098 - 0,089 - 0,094 - **CAGEARS C RIPOZONISHOЙ И ПОПЕРВЧНОЙ ГЕРМЕТИЗИНИЕ ПОПЕРВИНИЕ ПОПЕ	ОДНОЖИЛЬНЫЙ МНОГОЖИЛЬНЫЙ ОДНОЖИЛЬНЫЙ МНОГОЖИЛЬНЫЙ ОДНОЖИЛЬНЫЙ ОДНОМИНЬИВНОМИ ОДНОМИНЬИВНОМИ ОДНОМИНЬИВНОМИ ОДНОМИНЬИВНОМИ ОДНОМИНЬИВНЫМИ ОДНОМИНЬИВНИМИ ОДНОМИНЬИВНИМИ ОДНОМИНЬИВНИМИ ОДНОМИНЬИВНИМИ ОДНОМИНЬИВНИМИ ОДНОМИНЬИВНЫМИ	

Для многожильных бронированных кабелей приведенные значения индуктивного сопротивления должны быть увеличены на 10%.

Все значения индуктивного сопротивления для одножильных кабелей приведены из условий прокладки треугольником.

Рабочая емкость

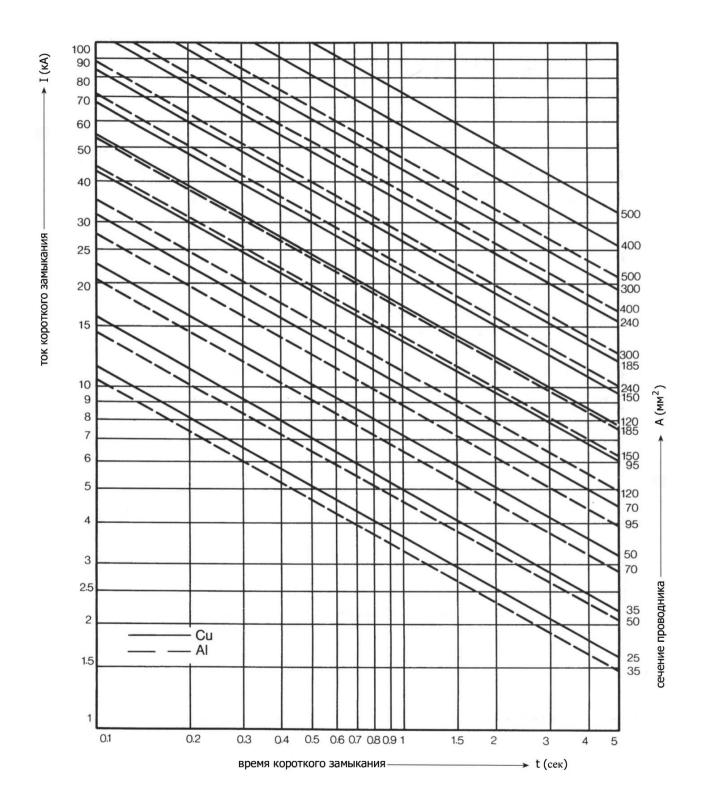
Кабели с изоляцией из сшитого полиэтилена

Таблица 8

Номинальное сечение проводника,	Рабочая емкость при номинальном напряжении, мкФ/км					
MM ²	6/10 ĸB	12/20 кВ	20,3/35 кВ			
35	0,22	0,16	-			
50	0,24	0,17	0,13			
70	0,28	0,19	0,15			
95	0,31	0,21	0,16			
120	0,33	0,23	0,18			
150	0,36	0,25	0,19			
185	0,39	0,27	0,20			
240	0,44	0,30	0,22			
300	0,48	0,32	0,24			
400	0,55	0,36	0,27			
500	0,61	0,40	0,29			

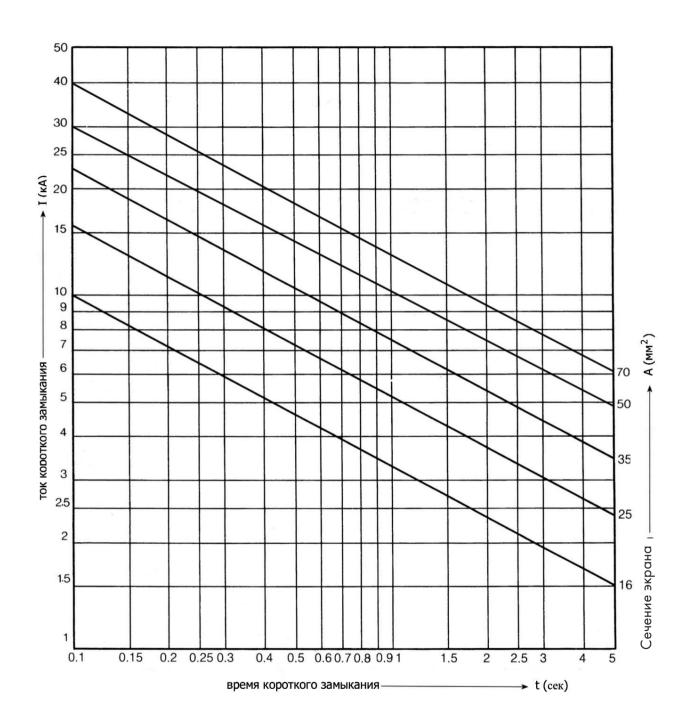
Емкостной ток

Кабели с изоляцией из сшитого полиэтилена


Таблица 9

Номинальное сечение проводника,	Емкостной то	ном напряже-	
MM ²	6/10 ĸB	12/20 кВ	20,3/35 кВ
35	1,2	1,8	-
50	1,3	1,9	2,2
70	1,5	2,1	2,4
95	1 <i>,7</i>	2,3	2,7
120	1,8	2,5	2,9
150	2,0	2,7	3,1
185	2,1	2,9	3,3
240	2,4	3,2	3,6
300	2,6	3,5	3,9
400	3,0	4,0	4,4
500	3,0	4,4	4,8

 $^{^{^{1)}}}$ Данные значения приведены при температуре окружающей среды $20\,\,^{\circ}$ С.



Значения токов короткого замыкания для кабелей с изоляцией из сшитого полиэтилена (6/10-20,3/35 кВ)

Значения токов короткого замыкания для медного экрана кабелей с изоляцией из сшитого полиэтилена

Стандартные сечения экранов

Сечение жилы, мм2	Стандартное	Сечение экрана, мм2,
	сечение экрана, мм²	по требованию заказчика
35120	16	35
150300	25	50
400500	35	70

Корректирующие коэффициенты на номинальный ток для кабелей при групповой прокладке

для кабелей, проложенных в земле

Условия прокладки

Температура почвы 20 °С1)

Термическое сопротивление почвы $1,0 \text{ K*m/Bt}^{1)}$

Расстояние между кабелями в системе 7 см¹⁾

Форма укладки кабелей треугольник

Коэффициент нагрузки 0,7 (70% нагрузка)

Таблица 10

Изоляция	Тип кабеля и номинальное		Количес	ство кабельных	с систем	
кириктовту	напряжение	2	4	6	8	10
Изоляция из сшито- го полиэтилена	трехжильный кабель 6–35 кВ	0,85	0,70	0,63	0,59	0,56
	одножильный кабель 6–35 кВ	0,85	0,70	0,63	0,59	0,56

Коэффициент нагрузки 1,0 (100% нагрузка)

Таблица 11

Изоляция	Тип кабеля и номинальное на-	Количество кабельных систем							
у ізоляция	пряжение	1	2	4	6	8	10		
Изоляция из сшитого	трехжильный кабель 6–10 кВ	0,83	0,67	0,53	0,47	0,44	0,41		
полиэтилена	одножильный кабель 6–35 кВ	0,81	0,66	0,52	0,47	0,43	0,41		

¹⁾Для других условий прокладки корректирующие коэффициенты должны быть рассчитаны в соответствии со стандартом DIN VDE 0276-1000.

Корректирующие коэффициенты при изменении температуры окружающей среды для кабелей, проложенных в земле

Температура, °С	-5	0	5	10	15	20	25	30
Кабели с изоляцией из сшитого полиэтилена	1,11	1,09	1,07	1,05	1,02	1,00	0,98	0,95

Корректирующие коэффициенты при групповой прокладке для многожильных кабелей

Таблица 13

Расположение кабелей	Расстояние = диаметр кабеля d Расстояние от стены	Количество лот- ков/полок, расположенных	Количество рядом лежащих кабелей				
	а ≥20 мм	друг над другом	1	2	3	4	5
Прокладка по земле	didid	1	0,97	0,96	0,94	0,93	0,90
Прокладка в кабельном лотке (ограниченная циркуляция воздуха)	a d d ⊕ ⊕ ,	1 2 3 6	0,97 0,97 0,97 0,97	0,96 0,95 0,94 0,93	0,94 0,92 0,91 0,90	0,93 0,90 0,89 0,88	0,90 0,86 0,84 0,83
Прокладка в кабельном лотке (свободная циркуляция воздуха)	@ 9 @ 9	1 2 3 6	1,0 1,0 1,0 1,0	1,0 0,99 0,98 0,97	0,98 0,96 0,95 0,94	0,95 0,92 0,91 0,90	0,91 0,87 0,85 0,84
Прокладка по ка- бельным полкам	a a 20 mm	1 2 3 6	1,0 1,0 1,0 1,0	1,0 0,99 0,98 0,97	1,0 0,98 0,97 0,96	1,0 0,97 0,96 0,94	1,0 0,96 0,93 0,91
Вертикальное распо- ложение на эстака-	[<u>≥</u> 225 mm] ⊕	Количество рядом расположенных лотков (в горизонтали)	Ко	др	уг над дру		
де, по стене или в кабельных лотках	⊚	(в горизонтали)	1	2	3	4	6
RGGONDINA NOTROX	(a)	1 2	1,0	0,91	0,89	0,88	0,87
		2	1,0	0,91	0,88	0,87	0,85

Расположение кабелей	Кабели лежат, со- прикасаясь друг с	Количество лот- ков/полок, распо- ложенных друг над другом	Количество рядом лежащих кабелей							
	другом		1	2	3	4	6	9		
Прокладка по земле	©0000000 	1	0,97	0,85	0,78	0,75	0,71	0,68		
Прокладка в кабельном лотке (ограниченная циркуляция воздуха)	a 200 mm	1 2 3 6	0,97 0,97 0,97 0,97	0,85 0,84 0,83 0,81	0,78 0,76 0,75 0,73	0,75 0,73 0,72 0,69	0,71 0,68 0,66 0,63	0,68 0,63 0,61 0,58		
Прокладка в кабельном лотке (свободная циркуляция воздуха)	a 220 ma	1 2 3 6	1,0 1,0 1,0 1,0	0,88 0,87 0,86 0,84	0,82 0,80 0,79 0,77	0,79 0,77 0,76 0,73	0,76 0,73 0,71 0,68	0,73 0,68 0,66 0,64		
Прокладка по кабель- ным полкам	300 mm	1 2 3 6	1,0 1,0 1,0 1,0	0,87 0,86 0,85 0,83	0,82 0,80 0,79 0,76	0,80 0,78 0,76 0,73	0,79 0,76 0,73 0,69	0,78 0,73 0,70 0,66		
Прокладка в кабель- ных лотках. Вертикальное распо- ложение	≥225 EFF	Количество рядом расположенных лотков	Количество кабелей, расположенных друг над другом							
		(в горизонтали)	1	2	3	4	6	9		
		1 2	1,0 1,0	0,88 0,88	0,82 0,81	0,78 0,76	0,73 0,71	0,72 0,70		
Прокладка по стене	ecesses.		0,95	0,78	0,73	0,72	0,68	0,66		

Корректирующие коэффициенты при групповой прокладке для одножильных кабелей

Таблица 15

Расположение кабелей. Прокладка треугольником	Расстояние = 2d Расстояние от стены а ≥20 мм	Количество лотков/полок, расположенных	Количество рядом лежащих кабелей						
троугольником	G <u>-</u> 20 Mark	друг над другом	1	2	3				
Прокладка по земле	2d 2d . 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1	0,98	0,96	0,94				
Прокладка в кабельном лотке (ограниченная цир- куляция воздуха)	20 00 mm 1 20 20 mm 1 20 20 mm 1 20 20 mm	1 2 3 6	0,98 0,95 0,94 0,93	0,96 0,91 0,90 0,88	0,94 0,87 0,85 0,82				
Прокладка в кабельном лотке (свободная циркуляция воздуха)		1 2 3 6	1,00 0,97 0,96 0,95	0,98 0,93 0,92 0,90	0,96 0,89 0,85 0,83				
Прокладка по кабельным полкам	a a ≥ 20 mm	1 2 3 6	1,00 0,97 0,96 0,95	1,00 0,95 0,94 0,93	1,00 0,93 0,90 0,87				
Вертикальное располо- жение на эстакаде, по стене или в кабельных лотках	[<u>*</u> 225 mm]	Количество рядом расположенных кабельных систем	Количество кабельных систем, распо- ложенных друг над другом						
	© 2d	(в горизонтали)	1	2	3				
		1 2	1,0 1,0	0,91 0,90	0,89 0,86				

Корректирующие коэффициенты при изменении температуры окружающей среды для кабелей, проложенных в воздухе

Температура, °С	-5	0	5	10	15	20	25	30	35	40	45	50
Кабели с изоляцией из сшитого полиэтилена	1,24	1,21	1,18	1,15	1,12	1,08	1,04	1,00	0,96	0,91	0,87	0,82

Кабели силовые с изоляцией из сшитого полиэтилена на напряжение 6-35 кВ Редакция 2005 г. Издание пятое.

Масса кабелей и конструктивные размеры приведены в качестве справочного материалла. Характеристики кабелей, не указанных в данном каталоге, Вы можите получить по запросу.

Это издание заменяет все предыдущие издания.

Для заметок